Part Number Hot Search : 
5N05E F71872FG 5KP10CA MAX15 MAX1430 1771101 NTE1439 TC74A
Product Description
Full Text Search
 

To Download BTC50010-1TAA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  automotive power data sheet 1.3, 2015-02-06 BTC50010-1TAA & btc30010-1taa smart high-side power connector 2x single channel, 2x 1m ?
data sheet 2 1.3, 2015-02-06 connect fet & companion BTC50010-1TAA & btc30010-1taa table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 general product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.1 output on-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.2 switching an inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 gate driver functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4 overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.5 protection during loss of load or loss of v s condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.6 BTC50010-1TAA inverse current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.7 reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.8 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.1 information for application combining pwm mode with fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 information for driving capability of charge pump pin after switch on . . . . . . . . . . . . . . . . . . . . . . 32 6.3 further application informat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 table of contents
type package marking BTC50010-1TAA pg-to-263-7-8 c50010a btc30010-1taa pg-to-263-7-8 c30010a pg-to-263-7-8 data sheet 3 1.3, 2015-02-06 connect fet & companion high-side power connector BTC50010-1TAA & btc30010-1taa 1overview applications ? switching resistive, capacitive and inductive loads in conjunction with an effective peripheral free wheeling circuit ? replaces electromechanical relay ? most suitable for high current applic ations, such as start-stop, power distribution, main switch, heating systems ? pwm application with low frequencies features ? load or supply line switching up to 60 a dc ? operating temperature up to 150c ? current controlled input pin ? low stand-by current ? two times one channel device, easily be combined for reverse blocking or to halve the r ds(on) ? electrostatic discharge protected (esd) ? optimized electromagnet ic compatibility (emc) ? very low power consumption in on state ? compatible to cranking pulse requirement (test pu lse 4 in iso7637 and cold start pulse in lv124) ?infineon ? reversave?: reverse battery protection by self turn on of the power mosfet ? inverse operation robustness capability ?infineon ? smart clamping ? green product (rohs compliant, halogen free package) ? aec qualified ? dustproof description the BTC50010-1TAA & btc30010-1taa are one high-side power connector (BTC50010-1TAA) combined with a perfect fitting n-channel mosfet (btc30010-1taa) to replace electromechanical relay. these easy to use twin devices can provide higher curr ent-driven capability or additional revers e polarity protection fe ature. they offer switching without audible noise, we ight reduction and incr eased switching cycle ca pability to comply with upcoming requirements on power distribution applicatio ns (e.g. battery disconnect switch). in addition, they
BTC50010-1TAA & btc30010-1taa overview data sheet 4 1.3, 2015-02-06 connect fet & companion significantly reduce power/current consumption of the dev ice while on to increase energy efficiency. the device can withstand harshest cranking pulse such as test pulse 4 in iso7637 and cold start pulse in lv124. table 1 product summary parameter symbol values BTC50010-1TAA weight (approx.) g1 1.5 g nominal operating voltage v s(op) 8v ? 18v extended operating voltage contai n dynamic undervoltage capability v s(dyn) 3.2 v ? 28 v nominal load current i l(nom) 30 a typical on-state resistance at t j = 25 c (cp pin open) r ds(on) 0.9 m ? typical input current in on state i in(on) 2ma typical stand-by current at t j = 25 c i s(off) 3a btc30010-1taa weight (approx.) g2 1.5 g nominal load current i l(nom)_c 30 a typical on-state resistance at t j = 25 c r ds(on) 0.9 m ? BTC50010-1TAA & btc30010-1taa operating voltage v s(op) 8v ? 18v extended operating voltage contai n dynamic undervoltage capability v s(dyn) 3.2 v ? 28 v nominal load current of parallel connected BTC50010-1TAA & btc30010-1taa i l(nom) + i l(nom)_c 60 a
BTC50010-1TAA & btc30010-1taa block diagram data sheet 5 1.3, 2015-02-06 connect fet & companion 2 block diagram figure 1 block diagra m BTC50010-1TAA figure 2 block diagra m btc30010-1taa v s out in1 driver logic gate control & charge pump esd protection cp internal power supply r vs on mode control in2 smart clamp v z = 6v pu ll-up curren t source z (a z )i n drain source gate smart clamp esd protection
BTC50010-1TAA & btc30010-1taa pin configuration data sheet 6 1.3, 2015-02-06 connect fet & companion 3 pin configuration 3.1 pin assignment figure 3 pin configuration for BTC50010-1TAA and btc30010-1taa 3.2 pin definitions and functions table 2 pin definition and functions of BTC50010-1TAA pin symbol function 1in1 in ; pull down to module ground for channel activation 1) 1) in1 and in2 are internally connected 2in2 in2; pull down to module ground for channel activation 1) 3cp charge pump output; output pin of internal charge pump voltage of btc50010- 1taa for driving btc30010-1taa 4, cooling tab vs supply voltage; connected to battery voltage 5, 6, 7 out output; high side power output 2) 2) all output pins are connected internally. all output pins have to be co nnected externally together on pcb. not shorting all outputs pins will considerably increase the on-resistance. pcb traces have to be designed to withstand the maximum current which can flow. pcb traces for output current are re commended to be designed symmetrically or having similar line resistance for any of the three output pins from this device. 123 4 57 6
BTC50010-1TAA & btc30010-1taa pin configuration data sheet 7 1.3, 2015-02-06 connect fet & companion table 3 pin definitions and functions of btc30010-1taa pin symbol function 1gate gate; is not allowed to be floating and has to be connected to cp pin of btc50010- 1taa to be switched on/off by BTC50010-1TAA. 2nc 3nc 4, cooling tab drain drain; connected to battery voltage fo r ?parallel circuit to halve the r ds(on) ? application in figure 27 . connected to load for ?b locking current in reverse polarity? application in figure 28 . 5, 6, 7 source source; n-channel mosfet source 1) . connected to BTC50010-1TAA ?out? pin for ?parallel circuit to halve the r ds(on )? application in figure 27 . connected to BTC50010-1TAA ?out? pin for ?blocking current in reverse polari ty? application in figure 28 . 1) all source pins are connected internally. all source pins have to be connected externally toget her on pcb. not shorting all outputs pins will considerably increase the on-resistance. pcb traces have to be designed to withstand the maximum current which can flow. pcb traces for output current are reco mmended to be designed symmetrically or having similar line resistance for any of the three output pins from this device.
BTC50010-1TAA & btc30010-1taa pin configuration data sheet 8 1.3, 2015-02-06 connect fet & companion 3.3 voltage and current definition figure 4 and figure 5 shows all terms used in this data sheet, wi th associated convention for positive values. figure 4 voltage and current definition of BTC50010-1TAA figure 5 voltage and current definition of btc30010-1taa v s in1 cp out i in v s v in i s v ds v out i l in2 module ground v cp connect in1 or / and in2 i cp v sin v s( re v) v out- in drain gate source v ds_c v gs _c i l_c
BTC50010-1TAA & btc30010-1taa general product characteristics data sheet 9 1.3, 2015-02-06 connect fet & companion 4 general product characteristics 4.1 absolute maximum ratings table 4 absolute maximum ratings 1) t j = -40 c to +150 c, all voltages and currents refer to definitions in figure 4 and figure 5 (unless otherwise specified). all parameters are specified for btc50010 -1taa drives btc30010-1taa in parallel or anti serial (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max. voltages supply voltage v s -0.3 ? 28 v ? p_4.1.1 voltage from v s to in pin v sin -0.3 ? 60 v ? p_4.1.2 reverse polarity voltage v s(rev) ?? 16 28 v BTC50010-1TAA drive btc30010- 1taa in parallel: t < 2 min t a = 25 c r l 0.5 ? v in = 0 v BTC50010-1TAA drive btc30010- 1taa in anti serial: t a = 25 c v in = v s p_4.1.3 supply voltage for load dump protection v s(ld) ?? 45 v 2) r l = 1.0 ? r in = 100 ? p_4.1.4 voltage at cp pin v cp -0.3 ? v cp_on v v cp = v gs_c p_4.1.5 voltage from out to in pin v outin = v out - v in v out-in -64 ? ? v 3) p_4.1.6 voltage from gate to source pin of btc30010-1taa v gs_c -0.3 ? v cp_on v v cp = v gs_c p_4.1.7 currents current through cp pin i cp -20 ? 20 ma for t < 0.5 ms during switch on/off p_4.1.8 device current vs. time capability at: i 6.0_125c = 0.85 x 6.0 x i rate for i rate = 40a 4) t @ i 6.0 ?? 0.8 s 5) BTC50010-1TAA drive btc30010- 1taa in parallel, current level: i 6.0_125c = 204 a, t a = 125 c, figure 6 p_4.1.9
BTC50010-1TAA & btc30010-1taa general product characteristics data sheet 10 1.3, 2015-02-06 connect fet & companion continuous drain current BTC50010-1TAA i d ?? 163 a t c = 25 c v in = 0 v, i cp 2a current is limited by bondwire p_4.1.10 continuous drain current of btc30010-1taa i d_c ?? 163 a t c = 25 c v gs 6.2 v current is limited by bondwire p_4.1.11 power stage average power dissipation p tot ?? 160 w 6) BTC50010-1TAA or btc30010-1taa for t j(0) 105 c p_4.1.14 temperatures junction temperature t j -40 ? 150 c ? p_4.1.15 dynamic temperature increase while switching ? t j ?? 60 k? p_4.1.16 storage temperature t stg -55 ? 150 c ? p_4.1.17 esd susceptibility esd susceptibility (all pins) v esd -2 ? 2 kv hbm 7) p_4.1.18 esd susceptibility btc50010- 1taa out pin vs. v s v esd_out -4 ? 4 kv hbm 7) p_4.1.19 esd susceptibility btc30010- 1taa drain pin v esd_d -4 ? 4 kv hbm 7) p_4.1.20 esd susceptibility btc30010- 1taa source pin v esd_s -4 ? 4 kv hbm 7) p_4.1.21 1) not subject to production test, specified by design. 2) v s(ld) is setup without dut connected to the generator per iso 7637-1. 3) relevant to application case such as loss of load, loss of battery (also negative iso pulse). 4) i q_b_125c = a x b x i rate . ?a? is the temperature re-rating factor from the fu se curve for 125c refer to 25c. ?b? is the factor of load current to i rate at 25c. 5) use test pcb with 2 x 70 m cu layers and size of 54 x 48 x 1.5 mm. where applicable, thermal via array is placed under the device footprint on this pcb. bt c50010-1taa & btc30010-1taa on pcb have r thja(2p) = 19.6 k/w (referring to 1w power dissipation for each device). pcb is vertical, keep cons tant environment temperature by indirect airflow of 6l/s. 6) p tot = ( t j(0) - t c ) / r thjc . p tot_max = (105c - 25c) / 0.5 k/w = 160 w. 7) esd susceptibility, hbm according to ansi/esda/jedec js-001-2010. table 4 absolute maximum ratings (cont?d) 1) t j = -40 c to +150 c, all voltages and currents refer to definitions in figure 4 and figure 5 (unless otherwise specified). all parameters are specified for btc50010 -1taa drives btc30010-1taa in parallel or anti serial (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max.
BTC50010-1TAA & btc30010-1taa general product characteristics data sheet 11 1.3, 2015-02-06 connect fet & companion BTC50010-1TAA & btc30010-1taa current robustness: below diagram present the current robustness of BTC50010-1TAA & btc30010-1taa. generally, module thermal characteristic is more depe nding on the module construction (e.g. pcb size, metal layer thickness and numbers, module connectors) than the thermal characteristic of BTC50010-1TAA & btc30010-1taa alone. when current pulse is longer than 0.3s, influence of module thermal characteristic is dominant. when current pulse is shorter than 0.3s, influence of thermal charac teristic of BTC50010-1TAA & btc30010-1taa is getting significant. combining BTC50010-1TAA & btc30010-1taa together with a fuse in application, the total i/t curve of the module (incl. BTC50010-1TAA & btc30010-1taa) has to be above the fuse i/t curve. wi th specified test setup 1) BTC50010-1TAA & btc30010-1taa can withstand minimum 10 fuse blows of a 40a ato fuse. figure 6 BTC50010-1TAA & btc30010-1taa current robustness at t a = 25c and t a = 125c; v s = 13.5v 1) 1) use test pcb with 2 x 70 m cu layers and size of 54 x 48 x 1.5 mm. where applicable, thermal via array is placed under the device footprint on this pcb. BTC50010-1TAA & btc300 10-1taa on pcb have rthja(2p ) = 19.6 k/w (referring to with 1 w power dissipation from each device). pcb is vertical, keep constant environment tem perature by indirect airflow of 6l/s. 0,1 1 10 100 1000 10 100 1000 time [s] current [a] BTC50010-1TAA and btc30010-1taa in parallel current robustness at t a =125c and t a =25c, vs=13.5v pcb is vertical, keep constant enviroment temperature by airflow devices absolute max. ratings @ta=125c devices absolute max. ratings @ta=25c
BTC50010-1TAA & btc30010-1taa general product characteristics data sheet 12 1.3, 2015-02-06 connect fet & companion notes 1. stresses above the ones described in chapter 4.1 may cause permanent damage to the device. exposure to absolute maximum rating cond itions for extended periods may affect device reliability. 2. integrated protection func tions are designed to prevent ic destructi on under fault conditions described in the data sheet. fault conditions are considered as ?outside? normal operating range. pr otection functi ons are not designed for continuous repetitive operation. 4.2 functional range note: within the functional range the ic operates as de scribed in the circuit description. the electrical characteristics are specifi ed within the conditions given in the re lated electrical ch aracteristics table. table 5 functional range t j = 25 c, all voltages and currents refer to definitions in and figure 5 (unless otherwise specified). all parameters are specified for BTC50010-1TAA drive btc30010-1taa in parallel or anti serial (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max. nominal operating voltage v s_op 8?18v? p_4.2.1 extended static operating voltage v s_op_ext 5?28v 1) 2) i l i l(nom) 1) not subject to production test, specified by design. 2) within the range of v s_op_ext and out of the range of v s_op , device parameter deviation is possible. p_4.2.2 extended operating voltage contain dynamic undervoltage capability v s_dyn 3.2 ? 28 v 1) v s decreasing according to iso7637 according to lv124 p_4.2.3 static undervoltage level (start of loss of functionality) v s_uv ??4.5v r l =270 ? v s decreasing v ds 0.5 v i cp_on =0a figure 7 p_4.2.4 undervoltage restart level static v s_uv_restart ??5v r l =270 ? v s increasing v ds 0.5 v i cp_on =0a figure 7 p_4.2.5 charge pump current in on state (maximum allowed leakage current at cp pin) i cp_on 02 a v in = 0 v, t > t on p_4.2.6 maximum allowed current in off state in pins high i in_off ? ? 30 a pull-up current flow through internal current source p_4.2.7
BTC50010-1TAA & btc30010-1taa general product characteristics data sheet 13 1.3, 2015-02-06 connect fet & companion figure 7 undervoltage behavior of btc50010-1t aa connected with btc30010-1taa on its cp pin v out v s_uv_restart_max v s v s_uv_max v s_uv_restart v s_uv switch off restart
BTC50010-1TAA & btc30010-1taa general product characteristics data sheet 14 1.3, 2015-02-06 connect fet & companion 4.3 thermal resistance figure 8 typical transient thermal impedance z th(ja) = f (t) for different cooling areas figure 8 is showing the typical thermal impedance of BTC50010-1TAA or btc30010-1taa mounted on different pcb setup on fr4 1s0p (single layer) and 2s2p (quad layer) boards at t j of 25c and 105c according to jedec jesd51-2,-5,-7 at natural convection. table 6 thermal resistance 1) for BTC50010-1TAA or btc30010-1taa at t j = 25 c 1) not subject to production test, specified by design. parameter symbol values unit note / test condition number min. typ. max. junction to case r thjc ??0.5k/w 2) 2) device is dissipating 1w power. p_4.3.1 junction to ambient r thja(2s2p) ?20?k/w 2) 3) 3) specified r thja value is according to jedec jesd51-2,-5,-7 at natura l convection on fr4 2s2p board; the product (chip + package) was simulated on a 76,4 x 114,3 x 1,5 mm board with 2 inner copper layers (2 x 70 m cu, 2 x 35 m cu). where applicable, a thermal via array under the expos ed pad contacted the first inner copper layer. p_4.3.2 junction to ambient r thja(1s0p) ?70?k/w 2) 4) 4) specified r thja value is according to jedec jesd51-2,-5,-7 at natura l convection on fr4 1s0p board; the product (chip + package) was simulated on a 76,4 x 114,3 x 1, 5 mm board with 1 copper layer (1 x 70 m cu). p_4.3.3 0.001 0.01 0.1 1 10 100 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 time [s] zth [k/w] 2s2p tj=105c 2s2p tj=25c 1s0p tj=105c 1s0p tj=25c
BTC50010-1TAA & btc30010-1taa functional description data sheet 15 1.3, 2015-02-06 connect fet & companion 5 functional description 5.1 power stage 5.1.1 output on-state resistance the on-state resistance r ds(on) depends on the supply voltage as well as the junction temperature t j . figure 18 shows the dependencies in terms of temperature and supp ly voltage, for the typica l on-state resistance. the behavior in reverse polarity is described in chapter 5.7 . a low signal (see chapter 5.2 ) at the input pin causes a current i in flowing internally from the v s pin out of the in pin to the module ground, thus the power dmos is switched on with a dedicated sl ope, which is optimized in terms of emc emission. 5.1.2 switching an inductive load when switching off inductive loads with high side switches, the voltage v out is driven below ground potential, due to the fact that the inductance intends to continue driv ing the current. to prevent the destruction of the device due to high voltages, the device implements an overvo ltage protection, which clamps the voltage between vs and vout at v ds(cl) (see figure 9 ). nevertheless it is not recommended to operate the device re petitively under this conditi on. therefore, when driving inductive loads, a free wheeling diode must be always placed. figure 9 overvoltage clamp v bat v out i l l, r l v s out v ds logic in v sin r in r vs z (az)in pull-up current source over- voltage clamp i in
BTC50010-1TAA & btc30010-1taa functional description data sheet 16 1.3, 2015-02-06 connect fet & companion figure 10 switching an inductance with or without free wheeling diode it is important to verify the effectiveness of the freewheeling solution (see figure 10 ), which means the selection of the proper diode and of an appropriate free wheeling path. with regard to the choice of the free wheeling diode, low threshold and fast response are key pa rameter to achieve an effective result. moreover the diode should be placed in order to have the shortest wire connection with the load (see figure 11 ). figure 11 optimization of the free wheeling path i in v out i l v s v s -v ds(cl) t t t i in v out i l v s v s -v ds(cl) t t t without free wheeling diode with free wheeling diode inductive load free wheeling diode free wheeling diode not optimized free wheeling path recommended free wheeling path inductive load BTC50010-1TAA BTC50010-1TAA btc30010-1taa btc30010-1taa
BTC50010-1TAA & btc30010-1taa functional description data sheet 17 1.3, 2015-02-06 connect fet & companion 5.2 gate driver functionality BTC50010-1TAA has an embedded gate driver. it is used to drive the gate of an integrated power dmos. the gate driver charges and discharges the gate of the dmos with current i charge and i discharge . refer to figure 12 , the gate driver is accessible via the cp pin. btc50010-1 taa is suitable for driving the btc30010-1taa in parallel to halve the connect resistance or in anti serial to bl ock the reverse current. during switch on, BTC50010-1TAA charges the gate capacitor of btc30010-1taa. figure 12 gate driver block diagram of BTC50010-1TAA during switch off, when v out decreases to around 2.5v below v s , the internal switch s 1 between gate and source will switch on to reduce the high energy consuming switch off time. additionally, when s 1 is switched on, the device is much more robust against electr omagnetic disturbance which could come from v s or output pin to ensure the device doesn?t suffer from an unwanted switch on. v cp i charge i discharge v s out cp s 1
BTC50010-1TAA & btc30010-1taa functional description data sheet 18 1.3, 2015-02-06 connect fet & companion figure 13 timing diagram of BTC50010-1TAA connected with btc30010-1taa on its cp pin note: figure 13 shows the general switching behavior. under real condition, voltage or current sketch deviation is possible. 5.3 undervoltage protection below v s_uv maximum value, the under voltage condi tion is met. upon further decrease of v s , the device will begin to lose functionality, until fi nally it will turn off. during v s increasing, as soon as the supply voltage is above the static level v s_uv_restart , device can be switched on. figure 7 sketches the undervoltage mechanism. v out t on t on_delay t off 90% v s 10% v s t t off_delay 25% v s 50% v s i cp t i cp_sw_on i in t i cp_on i cp_sw _off 0 i in _ on i in _ o ff
BTC50010-1TAA & btc30010-1taa functional description data sheet 19 1.3, 2015-02-06 connect fet & companion 5.4 overvoltage protection the BTC50010-1TAA & btc30010-1taa provides infineon ? smart clamping functio nality, which suppresses non nominal over voltages by actively clamping the overvoltage across the power stage and the load. this is achieved by controlling the clamp voltage v ds(cl) depending on the junction temperature t j and the load current i l . 5.5 protection during loss of load or loss of v s condition in case of loss of v s with charged line inductance s, the maximum supply voltage has to be limited. it is recommended to use a diode and a z-diode ( v z1 + v d1 < 16v, please refer to figure 14 ). figure 14 external component for BTC50010-1TAA loss of v s protection in case of loss of load with charged primary power li ne inductances, the maximum supp ly voltage also has to be limited. it is recommended to use a z-diode ( v z2 < 28v) or v s clamping power switches between v s and module ground (please refer to figure 15 ). v bat in r vs v s logic r in load v in z (az)in pull-up current source module r/l cable by case loss of vs v z1 ground r/l cable module ground v z1 b a external components according to either a or b is required, not both d 1 z 1 d 1 z 1 v d1 v d1
BTC50010-1TAA & btc30010-1taa functional description data sheet 20 1.3, 2015-02-06 connect fet & companion figure 15 external component for BTC50010-1TAA loss of load protection the 16v z-diode refers to the maximum v s(rev) voltage of the chip. the 28v z-diode refers to the maximum supply voltage ( v s ) of the chip. 5.6 BTC50010-1TAA inverse current capability in case of inverse current, meaning a voltage v out at the output higher than the supply voltage v s (e.g. caused by a load operating as a generator), a current i l will flow from output to v s pin via the body diode of the power transistor (please refer to figure 16 ). in case the in pin is low 1) , the power dmos is already activated and keeps on. in case, the input goes from ?h? to ?l?, the dm os will be activated. due to the limited speed of inv comparator, the output voltage slope needs to be limited. in case the in pin is high 2) , power dmos will not be switched on automatically. current will flow through the intrin sic body diode. this power dissipation could cause heating effect, which has to be considered. figure 16 BTC50010-1TAA inverse current circuitry 1) low means in pin is pulled-down by external transistor or i in > 0 2) high (h) means i in = 0 v bat in r vs v s logic r in load v in z (az)in pull-up current source module ground module ground by case loss of load r/l cable v z2 r/l cable out v s v bat -i l ol comp. v out v s inv comp. gate driver
BTC50010-1TAA & btc30010-1taa functional description data sheet 21 1.3, 2015-02-06 connect fet & companion 5.7 reverse polarity protection in case of reverse polarity for BTC50010-1TAA drive btc30010-1taa in parallel or BTC50010-1TAA alone, the intrinsic body diode of the power dmos causes power dissipat ion. to limit the risk of over temperature, the device provides infineon ? reversave? function. the power in this intrinsic body diode is limited by turning the dmos on. the dmos resistance is then equal to r ds(on)_rev (please refer to figure 19 and figure 20 ). additionally, the current into the logic has to be limited. the device includes a r vs resistor which limits the current in the diodes. to avoid over current in the r vs resistor, it is nevert heless recommended to use a r in resistor. please refer to maximum current described in table 4 . figure 17 shows a typical application. the recommended typical values for r in is 100 ? . figure 17 BTC50010-1TAA reverse polarity protection with external components note: the r vs has a typical value of 80 ? at 25c. refer to figure 17 , the r vs and r in build up a voltage divider to split up the supply voltage on BTC50010-1TAA, which protect the device during high voltage pulse (e.g. iso pulse 3b). in r vs v s v bat r in v in out i rvs - i l rev. on i in gnd dout control unit module ground z (az)in pull-up current source ground load
BTC50010-1TAA & btc30010-1taa functional description data sheet 22 1.3, 2015-02-06 connect fet & companion 5.8 electrical characteristics table 7 electrical characteristics: power stage v s = 13.5 v, t j = 25 c, all voltages and currents refer to definitions in figure 4 and figure 5 (unless otherwise specified). all parameters are spec ified for BTC50010-1TAA drive btc30010-1taa in parallel or anti serial (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max. voltage drop ( v ds and v ds_c ) v drop ?2736mv i l = 30 a and i l_c = 30 a BTC50010-1TAA drive btc30010- 1taa in parallel p_5.8.1 on-state resistance r ds(on) ?0.91.2m ? BTC50010-1TAA or btc30010-1taa, figure 18 p_5.8.2 on-state resistance hot r ds(on)_hot ??2.0m ? BTC50010-1TAA or btc30010-1taa, t j =150c figure 18 p_5.8.3 on-state resistance in infineon ? reversave? r ds(on)_rev ?0.9?m ? BTC50010-1TAA or btc30010-1taa, v in = 0 v p_5.8.4 on-state resistance during inverse operation r ds(on)_inv ?0.9?m ? BTC50010-1TAA or btc30010-1taa, v in = 0 v p_5.8.5 BTC50010-1TAA & btc30010-1taa supply current stand-by in pins floating i s_off ? 3 13 a leakage current flow through out pin p_5.8.6 drain to source smart clamp voltage ( v ds(cl) = v s - v out for BTC50010-1TAA; v ds(cl) = v d - v s for btc30010-1taa) v ds(cl) 28 ? 60 v i l_c =50ma t j = 25 c to 150c p_5.8.7 table 8 electrical characteristics: input stage v s = 13.5 v, t j = 25 c, all voltages and currents refer to definitions in figure 4 and figure 5 (unless otherwise specified). all parameters are spec ified for BTC50010-1TAA drive btc30010-1taa in parallel or anti serial (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max. input current in on state in pins low i in_on ?2 3ma v s = 18 v p_5.8.8
BTC50010-1TAA & btc30010-1taa functional description data sheet 23 1.3, 2015-02-06 connect fet & companion table 9 electrical characteristics: charge pump v s = 13.5 v, t j = 25 c, all voltages and currents refer to definitions in figure 4 and figure 5 (unless otherwise specified). all parameters ar e specified for BTC50010-1TAA (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max. charge pump current during switch on i cp_sw_on 0.7 2.2 ? ma v in =0v v cp =0v p_5.8.9 charge pump current during switch off i cp_sw_off 350 850 ? a v in = v s = 8 v v cp = v cp_on v out = v s p_5.8.10 charge pump voltage v cp_on 5?7v v in = 0 v figure 30 p_5.8.11 table 10 electrical characteristics: timing v s = 13.5 v, t j = 25 c, all voltages and currents refer to definitions in figure 4 and figure 5 (unless otherwise specified). all parameters are specified for BTC50010-1TAA alone (unless otherwise specified). parameter symbol values unit note / test condition number min. typ. max. turn on time t on ? 200 500 s see timing figure 13 cp pin open p_5.8.12 turn off time t off ? 200 500 s see timing figure 13 cp pin open p_5.8.13 turn on delay time t on_delay ? 80 150 s see timing figure 13 cp pin open p_5.8.14 turn off delay time t off_delay ? 180 300 s see timing figure 13 cp pin open p_5.8.15
BTC50010-1TAA & btc30010-1taa functional description data sheet 24 1.3, 2015-02-06 connect fet & companion figure 18 r ds(on) vs. v s of BTC50010-1TAA or btc30010-1taa figure 19 typical r ds(on)_rev of BTC50010-1TAA or btc30010-1taa vs. v s(rev) with v in = 0v in reverse mode for lower values of v s(rev) 0 0.5 1 1.5 2 2.5 4.5 9.5 14.5 19.5 24.5 v s [v] typical r ds(o n ) [m ? ] 150c 25c -40c 0 5 10 15 20 25 30 6.0 6.5 7.0 7.5 8.0 typical r ds(on)_rev [m ] v s(rev) [v] 150 c 25 c -40 c
BTC50010-1TAA & btc30010-1taa functional description data sheet 25 1.3, 2015-02-06 connect fet & companion figure 20 typical r ds(on)_rev of BTC50010-1TAA or btc30010-1taa vs. v s(rev) with v in = 0v in reverse mode for higher values of v s(rev) figure 21 t on of BTC50010-1TAA with/without btc30010-1taa 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 8 9 10 11 12 13 14 15 16 typical r ds(on)_rev [m ] v s(rev) [v] 150 c 25 c -40 c typical t on of BTC50010-1TAA w ith/w itout btc30010-1taa 0.00e+00 1.00e-04 2.00e-04 3.00e-04 4.00e-04 5.00e-04 6.00e-04 0 1 number of companion (btc30010-1taa) typical t on [s] 150c 25c -40
BTC50010-1TAA & btc30010-1taa functional description data sheet 26 1.3, 2015-02-06 connect fet & companion figure 22 t off of BTC50010-1TAA with/without btc30010-1taa figure 23 t on_delay of BTC50010-1TAA with/without btc30010-1taa typical t off of BTC50010-1TAA with/witout btc30010-1taa 0.00e+00 2.00e-04 4.00e-04 6.00e-04 8.00e-04 1.00e-03 1.20e-03 0 1 number of companion (btc30010-1taa) typical t off [s] 150c 25c -40c typical t on_delay of BTC50010-1TAA w ith/w itout btc30010-1taa 0.00e+00 2.00e-05 4.00e-05 6.00e-05 8.00e-05 1.00e-04 1.20e-04 1.40e-04 1.60e-04 1.80e-04 2.00e-04 0 1 number of companion (btc30010-1taa) typical t on_delay [s] 150c 25c -40c
BTC50010-1TAA & btc30010-1taa functional description data sheet 27 1.3, 2015-02-06 connect fet & companion figure 24 t off_delay of BTC50010-1TAA with/without btc30010-1taa figure 25 v out_on_slewrate of BTC50010-1TAA with /without btc30010-1taa typical t off_delay of BTC50010-1TAA with/witout btc30010-1taa 0.00e+00 1.00e-04 2.00e-04 3.00e-04 4.00e-04 5.00e-04 6.00e-04 7.00e-04 8.00e-04 9.00e-04 1.00e-03 0 1 number of companion (btc30010-1taa) typical t off_delay [s] 150c 25c -40c typical v out_on_slewrat e of BTC50010-1TAA w ith/w itout btc30010-1taa 0.00e+00 5.00e-02 1.00e-01 1.50e-01 2.00e-01 2.50e-01 3.00e-01 3.50e-01 4.00e-01 4.50e-01 0 1 number of companion (btc300101-1taa) typical v out_on_slewrate [v/us] 25c -40c 150c
BTC50010-1TAA & btc30010-1taa functional description data sheet 28 1.3, 2015-02-06 connect fet & companion figure 26 v out_off_slewrate of BTC50010-1TAA with/without btc30010-1taa typical v out_off_slewrat e of BTC50010-1TAA with/witout btc30010-1taa 0.00e+00 5.00e-01 1.00e+00 1.50e+00 2.00e+00 2.50e+00 3.00e+00 3.50e+00 4.00e+00 0 1 number of companion (btc30010-1taa) typical v out_off_slewrate [v/us] 150c 25c -40c
BTC50010-1TAA & btc30010-1taa application information data sheet 29 1.3, 2015-02-06 connect fet & companion 6 application information this chapter describes especially how BTC50010-1TAA & btc30010-1taa can be combined and used together in application environment. note: the following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain f unctionality, condition or quality of the device. figure 27 application diagram with BTC50010-1TAA & btc30010-1taa in1 cp out v s in2 t1 v bat r/l cable c vs fuse b depending on application requirement, either fuse a or fuse b will be placed r in BTC50010-1TAA module ground c out btc30010-1taa d g s module za zb za d g s control signal from control unit option a option b ground fuse a options for free wheeling path of inductive load optional: mosfet to block reverse current t2 v z2 v z1 z1 z2 load r/l cable
BTC50010-1TAA & btc30010-1taa application information data sheet 30 1.3, 2015-02-06 connect fet & companion figure 28 application diagram with btc50010-1 taa and btc30010-1taa for reverse blocking. table 11 bill of material reference value purpose t 1 npn or mosfet transistor npn (e.g. bcr133) or mosfet (e.g. bss123) transistor suitable for 5v voltage range controlled by control unit for driving the BTC50010-1TAA r in 100 ? protection of BTC50010-1TAA and the microcontroller or control unit during over voltage and reverse polarity, whic h could be created by huge negative pulse (like iso pulse 1) z 1 and z 2 zener diodes protection of the BTC50010-1TAA & btc30010-1taa during loss of load (correspond to fuse blow on fuse a) or loss of battery (correspond to fuse blow on fuse b) or against huge negative pulse (like iso pulse 1), please refer to figure 14 and figure 15 . in1 cp out v s in2 t1 v bat r/l cable c vs fuse b depending on application requirement, either fuse a or fuse b will be placed r in BTC50010-1TAA c out btc30010-1taa v z2 v z1 z1 z2 module ground module za zb za option a option b ground fuse a options for free wheeling path of inductive load load r/l cable d g s
BTC50010-1TAA & btc30010-1taa application information data sheet 31 1.3, 2015-02-06 connect fet & companion 6.1 information for application combining pwm mode with fuse when the connect fet (BTC50010-1TAA) is driving a co mpanion (btc30010-1taa) with its cp pin, the switch on/off time will increase significan tly compare to connect fet (btc 50010-1taa) alone (please refer to figure 21 , figure 22 and BTC50010-1TAA data s heet), therefore the pwm frequ ency will decrease clearly compare to connect fet (BTC50010-1TAA) alone. the maximum of average power dissipation 1) p loss is not allowed to be exceeded. above all, the condition of t dc > t fuseblow_max must be fulfilled. the t fuseblow_max is the maximum fuse blow time at certain fuse blow current on the i/t curve of the selected fuse for certain application. during short circuit, the load current could rise up to multiple of the nomi nal current value until fuse blow. the t dc is defined in figure 29 . p loss = (switching_on_energy + switching_off_energy + i l 2 * r ds(on) * t dc ) / t period figure 29 definition of average power dissipation of BTC50010-1TAA & btc30010-1taa z a and/or z b schottky diode zener transient suppressor protection of BTC50010-1TAA & btc30010-1taa when driving an inductive load, stand alone (option b) or together with z b (option a). protection of BTC50010-1TAA & btc30010-1taa when driving an inductive load, to be used together with z a in option a to accelerate the demagnetization process. t 2 mosfet transistor added optionally only for blocking the re verse current in free wheeling path, needed only for option a or b. fuse e.g. 40a ato fuse 1) protection of the BTC50010-1TAA & btc30010-1taa, wire harness and the load during short circuit. depending on application requirement, either fuse a or fuse b will be placed. c vs 100 nf improve emc behavior (in layou t, please place it close to the pin) c out 10 nf improve emc behavior (in layout, please place it close to the pins) 1) or 30a ato see figure 28 ) 1) in real application with r thj,a and t amb the maximum allowed average power dissipation is defined: p loss =(150c - t amb ) / r thj,a table 11 bill of material (cont?d) reference value purpose i in t i in _ o n i in _ off t p loss p t dc t period
BTC50010-1TAA & btc30010-1taa application information data sheet 32 1.3, 2015-02-06 connect fet & companion 6.2 information for driving capability of charge pump pin after switch on curves below show that the driving capability of btc50010-1 taa?s charge pump has a dependency on its gate voltage and battery voltage. it defines the relevant ran ge of charge pump current for driving the gate capacity of btc30010-1taa. figure 30 typical charge pump driving capability of BTC50010-1TAA vs. its gate-source voltage 6.3 further application information ? please contact us for information regarding the pin fmea ? for further information you may contact http://www.infineon.com/ 0 50 100 150 200 250 01234567 v cp [v] i cp [a] t = 150c t = 85c t = 25c t = -40c vout = vs = 13.5v
BTC50010-1TAA & btc30010-1taa package outlines data sheet 33 1.3, 2015-02-06 connect fet & companion 7 package outlines figure 31 pg-to-263-7-8 (rohs compliant) green product (rohs compliant) to meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. green products are rohs-compliant (i.e pb-free finish on leads and suitable for pb-free soldering according to ipc/jedec j-std-020). BTC50010-1TAA & btc30010-1taa meet the msl 1 (moist ure sensitivity level 1) according to ipc/jedec j-std-020d and can withstand until 245c peak reflow process. ?.2 gpt09063 10 8.5 1) (15) ?.2 9.25 ?.3 1 0...0.15 6 x 0.6 ?.1 ?.1 1.27 4.4 b 0.5 ?.1 ?.3 2.7 4.7 ?.5 ?.3 1.3 2.4 typical metal surface min. x = 7.25, y = 6.9 all metal surfaces tin plated, except area of cut. 1) 0.1 b 0...0.3 a 7.55 1) 6 x 1.27 m 0.25 ab 0.1 0.05 8? max. dimension in mm for further info rmation on alternative pa ckages, please visit our website: http://www.infineon.com/packages . dimensions in mm
BTC50010-1TAA & btc30010-1taa revision history data sheet 34 1.3, 2015-02-06 connect fet & companion 8 revision history revision date changes 1.0 2011-12-21 data sheet released 1.1 2012-06-15 page 3, application: in the first bullet point, ?inductive? removed page 4, product summary: in the 11th row, rename ?continuous drain current id _c? to ?nominal load current il(nom) _c? page 4, product summary: in the 16th row, rename ?id _c? to ?il(nom) _c? page 8, figure 5 modified, rename ?id _c? to ?il _c? page 10, parameter nind (p_4.1.11) removed page 10, parameter n0 (p_4.1.10) renamed as p_4.1.12 page 10, parameter id (p_4.1.10) and id _c(p_4.1.11) added page 10, parameter ear (p_4.1.13) removed page 11, figure 6 modified, e ar curve removed page 11, figure 7 removed page 15, chapter 5.1.2 title modified, note added page 20 ~ 21, chapter 5 .5 description modified page 20 ~ 21, figure 15 and figure 16 modified page 21, figure 17 modified page 22, figure 18 modified page 24, table 11 first row, seventh column, rename ?ids? to ?il _c? page 24, table 11 seventh row, seventh column, rename ?ids? to ?il _c? page 29, figure 27 modified page 30, figure 28 modified page 33, figure 31 modified page 33 ~ 34, figure 32 and table 12 added page 34, note ?the follo wing application informatio n represents only as a recommendation for switching an inductive load. the function must be verified in the real application? added 1.2 2012-11-16 page 9, note ?when driving resi stive loads with remain ing wire or parasitic inductances it must be en sured, that the device w ill not enter clamping mode during normal operating? added
BTC50010-1TAA & btc30010-1taa revision history data sheet 35 1.3, 2015-02-06 connect fet & companion 1.3 2015-01-26 comprehensive rewo rk of rev. 1.2; several figures have been renumbered chapter 1 : overview table 1 removed wording ?over life time?, updated various symbols applications : first, third and fourth bullet: changed wording features : change of wording description : change of wording chapter 3.2 : updated footnote 2 chapter 3.3 : figure 4 change v outin to v out-in chapter 4 : removed note chapter 4.1 : p_4.1.6: change v outin to v out-in p_4.1.12: removed from table p_4.1.13: removed from table table 4 : correction within footnote 5 page 11 : footnote 1 modified removed figure about total energy capa bility for switch of f inductive loads reduced figures about current robustness chapter 4.3 page 14 : modified text chapter 5.1.2 : completely reworked subchapter chapter 5.2 : change of wording, removed re marks about energy capability. chapter 5.5 : modified figure 14 , figure 15 chapter 5.6 : modified text about negative load current, new footnote (1) about definition of low and high state chapter 5.7 : modified figure 17 chapter 5.8 p_5.8.11 add max. value p_5.8.12, p_5.8.13, p_5.8.14, p_5.8.15: add typical value figure 19 , figure 20 new generated out of former figure chapter 6 : reworked text and note; removed figure 27,28 list of required external components new figure 27 , figure 28 , updated table 11 removed former chapter 6.3 (now within chapter 6 ) chapter 6.1 : and text modified revision date changes
edition 2015-02-06 published by infineon technologies ag 81726 munich, germany ? 2012 infineon technologies ag all rights reserved. legal disclaimer the information given in this docu ment shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, infine on technologies hereby disclaims any and all warranties and liabilities of any kind, including witho ut limitation, warranties of non-infrin gement of intellectua l property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. infineon technologies compon ents may be used in life-su pport devices or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safe ty or effectiveness of that de vice or system. life support devices or systems are intended to be implanted in the hu man body or to support an d/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of BTC50010-1TAA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X